Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Euro Surveill ; 29(16)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639094

RESUMO

In 2023, an increase of OXA-48-producing Klebsiella pneumoniae was noticed by the Lithuanian National Public Health Surveillance Laboratory. Whole genome sequencing (WGS) of 106 OXA-48-producing K. pneumoniae isolates revealed three distinct clusters of carbapenemase-producing K. pneumoniae high-risk clones, including sequence type (ST) 45 (n = 35 isolates), ST392 (n = 32) and ST395 (n = 28), involving six, six and nine hospitals in different regions, respectively. These results enabled targeted investigation and control, and underscore the value of national WGS-based surveillance for antimicrobial resistance.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Lituânia/epidemiologia , Tipagem de Sequências Multilocus , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , beta-Lactamases/genética , Proteínas de Bactérias/genética , Hospitais , Surtos de Doenças , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
2.
Appl Environ Microbiol ; 89(10): e0055923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787538

RESUMO

Neomycin is the first-choice antibiotic for the treatment of porcine enteritis caused by enterotoxigenic Escherichia coli. Resistance to this aminoglycoside is on the rise after the increased use of neomycin due to the ban on zinc oxide. We identified the neomycin resistance determinants and plasmid contents in a historical collection of 128 neomycin-resistant clinical E. coli isolates from Danish pig farms. All isolates were characterized by whole-genome sequencing and antimicrobial susceptibility testing, followed by conjugation experiments and long-read sequencing of eight selected representative strains. We detected 35 sequence types (STs) with ST100 being the most prevalent lineage (38.3%). Neomycin resistance was associated with two resistance genes, namely aph(3')-Ia and aph(3')-Ib, which were identified in 93% and 7% of the isolates, respectively. The aph(3')-Ia was found on different large conjugative plasmids belonging to IncI1α, which was present in 67.2% of the strains, on IncHI1, IncHI2, and IncN, as well as on a multicopy ColRNAI plasmid. All these plasmids except ColRNAI carried genes encoding resistance to other antimicrobials or heavy metals, highlighting the risk of co-selection. The aph(3')-Ib gene occurred on a 19 kb chimeric, mobilizable plasmid that contained elements tracing back its origin to distantly related genera. While aph(3')-Ia was flanked by either Tn903 or Tn4352 derivatives, no clear association was observed between aph(3')-Ib and mobile genetic elements. In conclusion, the spread of neomycin resistance in porcine clinical E. coli is driven by two resistance determinants located on distinct plasmid scaffolds circulating within a highly diverse population dominated by ST100. IMPORTANCE Neomycin is the first-choice antibiotic for the management of Escherichia coli enteritis in pigs. This work shows that aph(3')-Ia and to a lesser extent aph(3')-Ib are responsible for the spread of neomycin resistance that has been recently observed among pig clinical isolates and elucidates the mechanisms of dissemination of these two resistance determinants. The aph(3')-Ia gene is located on different conjugative plasmid scaffolds and is associated with two distinct transposable elements (Tn903 and Tn4352) that contributed to its spread. The diffusion of aph(3')-Ib is mediated by a small non-conjugative, mobilizable chimeric plasmid that likely derived from distantly related members of the Pseudomonadota phylum and was not associated with any detectable mobile genetic element. Although the spread of neomycin resistance is largely attributable to horizontal transfer, both resistance determinants have been acquired by a predominant lineage (ST100) associated with enterotoxigenic E. coli, which accounted for approximately one-third of the strains.


Assuntos
Enterite , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Animais , Suínos , Neomicina/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Fazendas , Antibacterianos/farmacologia , Plasmídeos/genética , Escherichia coli Enterotoxigênica/genética , Patrimônio Genético , Dinamarca , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
3.
Acta Vet Scand ; 65(1): 30, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400879

RESUMO

BACKGROUND: Post-weaning diarrhoea (PWD) is a multifactorial condition and the most well documented infectious cause is enterotoxigenic Escherichia coli. The objective of the study was to investigate possible associations between pathological manifestations and pathogens in pigs with and without PWD. The study was conducted as a case-control study and included a total of 173 pigs from 9 different commercial intensive indoor production herds in eastern Denmark. RESULTS: Based on clinical examination, a total of 89 piglets with PWD (cases) and 84 piglets without PWD (controls) were included. Most of the pigs (n = 105/173) presented gastric lesions, which were more frequently observed in the control group. The odds of gastric ulcers were lower among pigs with PWD compared to pigs without PWD with an odds ratio (OR) of 0.2 (0.0; 0.7). Abnormal content in the colon was associated with PWD, with an OR of 6.5 (3.2; 14.3). No apparent association was found between lesions and the various pathogens or a combination of these. The odds of neutrophilic granulocyte infiltration were lower in the jejunum among pigs with PWD (OR 0.3 [0.1; 0.6]) compared to pigs without PWD. The association between neutrophilic granulocyte infiltration in jejunum and PWD differed between the herds (P = 0.03). Furthermore, the associations between PWD and hyperleukocytosis (P = 0.04) or infiltration of eosinophilic granulocytes (P = 0.04) in ileum were also herd dependent. Histopathology revealed several lesions not relatable to PWD. CONCLUSION: The association between lesions and specific pathogens or PWD is more complex than anticipated.


Assuntos
Infecções por Escherichia coli , Doenças dos Suínos , Animais , Suínos , Infecções por Escherichia coli/veterinária , Estudos de Casos e Controles , Diarreia/veterinária , Diarreia/patologia , Trato Gastrointestinal , Jejuno , Doenças dos Suínos/patologia
4.
Porcine Health Manag ; 9(1): 33, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434248

RESUMO

BACKGROUND: Recently, in-feed medicinal zinc has been phased out in pig production in the European Union. This makes updated knowledge about porcine post-weaning diarrhea (PWD) crucial. The objectives of the present study were to investigate (i) the clinical presentation of PWD in pigs housed in Danish herds that did not use medicinal zinc, specifically the prevalence of diarrhea and whether PWD was associated to clinical signs of dehydration or altered body temperature; (ii) which microorganism are associated to PWD; and iii) whether measurements of the fecal pH have a potential to be used diagnostically to differentiate between infectious etiologies in cases of PWD. RESULTS: The prevalence of diarrhea varied considerably between the outbreaks in the nine studied herds (median = 0.58, range = 0.10; 0.94). In a cross-sectional design (n = 923), diarrhea was associated with reduced rectal temperature and alkaline feces. Diarrhea was also associated with observably reduced skin elasticity, possibly indicating dehydration. In both diarrheic case pigs (n = 87) and control pigs (n = 86), the presence of Brachyspira pilosicoli, Clostridium perfringens, Cryptosporidium spp., Cystoisopora suis, enterotoxigenic Escherichia coli, Lawsonia intracellularis, porcine circovirus types 2 and 3, rotavirus A, B, C, and H, Samonella enterica spp. enterica, and Trichuris suis was described. PWD was associated with high levels of enterotoxigenic E. coli shedding (odds ratio versus no E. coli detection = 4.79 [CI 1.14; 12.62]). Diarrhea was associated with high levels of rotavirus A shedding (odds ratio versus no/low rotavirus A = 3.80 [CI 1.33; 7.97]). The association between microbiological findings in diarrheic pigs and fecal pH was negligible. CONCLUSIONS: Enterotoxigenic E. coli was confirmed to be a cause of PWD; however, cases of PWD where enterotoxigenic E. coli was not detected in high levels occurred commonly, and this adds to the increasing evidence suggesting that PWD is not necessarily a result of enteric colibacillosis. Rotaviral enteritis might be a differential diagnosis of PWD. pH-measurements cannot be used to differentiate between differential diagnoses for PWD.

5.
Porcine Health Manag ; 9(1): 26, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264473

RESUMO

BACKGROUND: Diagnosing and treatment of diseases in pigs are important to maintain animal welfare, food safety and productivity. At the same time antimicrobial resistance is increasing, and therefore, antibiotic treatment should be reserved for individuals with a bacterial infection. The aim of the study was to investigate gross and histological lesions and related pathogens in pigs that died during the nursery period in five Danish farms. In addition, high throughput, real-time qPCR monitoring of specific porcine pathogens in fecal sock and oral fluid samples were carried out to investigate the between-farm and between-batch variation in the occurrence of pathogens. RESULTS: Twenty-five batches of nursery pigs from five intensive, indoor herds were followed from weaning (approximately four weeks) to the end of nursery (seven to eight weeks post weaning). Gross and histological evaluation of 238 dead and 30 euthanized pigs showed the highest prevalence of lesions in the skin, respiratory system, gastrointestinal tract, and joints. Gross and histological diagnoses of lung and joint lesions agreed in 46.5% and 62.2% of selected pigs, respectively. Bacteriological detection of Escherichia coli, Streptococcus suis or Staphylococcus aureus infections in joints, lungs and livers was confirmed as genuine infection on immunohistochemical staining in 11 out of 70 tissue sections. The real-time qPCR analysis of pooled samples showed that most pathogens detected in feces and in oral fluid in general followed the same shedding patterns in consecutive batches within herds. CONCLUSIONS: Gross assessment should be supplemented with a histopathological assessment especially when diagnosing lesions in the lungs and joints. Moreover, microbiological detection of pathogens should optimally be followed up by in situ identification to confirm causality. Furthermore, routine necropsies can reveal gastric lesions that may warrant a change in management. Real-time qPCR testing of fecal sock samples and oral fluid samples may be used to monitor the infections in the individual herd and testing one batch seems to have a good predictive value for subsequent batches within a herd. Overall, optimal diagnostic protocols will provide a more substantiated prescription of antibiotics.

6.
Microorganisms ; 11(6)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37374927

RESUMO

Arcobacter (A.) butzleri, the most widespread species within the genus Arcobacter, is considered as an emerging pathogen causing gastroenteritis in humans. Here, we performed a comparative genome-wide analysis of 40 A. butzleri strains from Lithuania to determine the genetic relationship, pangenome structure, putative virulence, and potential antimicrobial- and heavy-metal-resistance genes. Core genome single nucleotide polymorphism (cgSNP) analysis revealed low within-group variability (≤4 SNPs) between three milk strains (RCM42, RCM65, RCM80) and one human strain (H19). Regardless of the type of input (i.e., cgSNPs, accessory genome, virulome, resistome), these strains showed a recurrent phylogenetic and hierarchical grouping pattern. A. butzleri demonstrated a relatively large and highly variable accessory genome (comprising of 6284 genes with around 50% of them identified as singletons) that only partially correlated to the isolation source. Downstream analysis of the genomes resulted in the detection of 115 putative antimicrobial- and heavy-metal-resistance genes and 136 potential virulence factors that are associated with the induction of infection in host (e.g., cadF, degP, iamA), survival and environmental adaptation (e.g., flagellar genes, CheA-CheY chemotaxis system, urease cluster). This study provides additional knowledge for a better A. butzleri-related risk assessment and highlights the need for further genomic epidemiology studies in Lithuania and other countries.

7.
J Appl Microbiol ; 133(4): 2516-2527, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35858716

RESUMO

AIMS: Diarrhoea is a common health problem in calves and a main reason for use of antimicrobials. It is associated with several bacterial, viral and parasitic pathogens, most of which are commonly present in healthy animals. Methods, which quantify the causative agents, may therefore improve confidence in associating a pathogen to the disease. This study evaluated a novel commercially available, multiplex quantitative polymerase chain reaction (qPCR) assay (Enterit4Calves) for detection and quantification of pathogens associated with calf-diarrhoea. METHODS AND RESULTS: Performance of the method was first evaluated under laboratory conditions. Then it was compared with current routine methods for detection of pathogens in faecal samples from 65 calves with diarrhoea and in 30 spiked faecal samples. The qPCR efficiencies were between 84%-103% and detection limits of 100-1000 copies of nucleic acids per sample were observed. Correct identification was obtained on 42 strains of cultured target bacteria, with only one false positive reaction from 135 nontarget bacteria. Kappa values for agreement between the novel assay and current routine methods varied between 0.38 and 0.83. CONCLUSION: The novel qPCR method showed good performance under laboratory conditions and a fair to good agreement with current routine methods when used for testing of field samples. SIGNIFICANCE AND IMPACT OF STUDY: In addition to having fair to good detection abilities, the novel qPCR method allowed quantification of pathogens. In the future, use of quantification may improve diagnosis and hence treatment of calf diarrhoea.


Assuntos
Reação em Cadeia da Polimerase Multiplex , Ácidos Nucleicos , Animais , Bactérias/genética , Bovinos , Diarreia/diagnóstico , Diarreia/microbiologia , Diarreia/veterinária , Fezes/microbiologia , Reação em Cadeia da Polimerase Multiplex/métodos , Sensibilidade e Especificidade
8.
J Wildl Dis ; 58(2): 269-278, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35255126

RESUMO

Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum ß-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission.


Assuntos
Infecções por Escherichia coli , Infecções por Klebsiella , Animais , Antibacterianos/uso terapêutico , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Genômica , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/veterinária , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana/veterinária , Pan troglodytes , Uganda/epidemiologia , beta-Lactamases/genética
9.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928200

RESUMO

Uropathogenic Escherichia coli (UPEC) UTI89 is a well-characterized strain, which has mainly been used to study UPEC virulence during urinary tract infection (UTI). However, little is known on UTI89 key fitness-factors during growth in lab media and during UTI. Here, we used a transposon-insertion-sequencing approach (TraDIS) to reveal the UTI89 essential-genes for in vitro growth and fitness-gene-sets for growth in Luria broth (LB) and EZ-MOPS medium without glucose, as well as for human bacteriuria and mouse cystitis. A total of 293 essential genes for growth were identified and the set of fitness-genes was shown to differ depending on the growth media. A modified, previously validated UTI murine model, with administration of glucose prior to infection was applied. Selected fitness-genes for growth in urine and mouse-bladder colonization were validated using deletion-mutants. Novel fitness-genes, such as tusA, corA and rfaG; involved in sulphur-acquisition, magnesium-uptake, and LPS-biosynthesis, were proved to be important during UTI. Moreover, rfaG was confirmed as relevant in both niches, and therefore it may represent a target for novel UTI-treatment/prevention strategies.


Assuntos
Bacteriúria/microbiologia , Meios de Cultura/química , Cistite/microbiologia , Genes Essenciais , Glucose/administração & dosagem , Análise de Sequência de DNA/métodos , Escherichia coli Uropatogênica/crescimento & desenvolvimento , Animais , Técnicas Bacteriológicas , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Aptidão Genética , Glucose/química , Glucose/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Mutagênese Insercional , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/genética , Fatores de Virulência/genética
10.
Porcine Health Manag ; 7(1): 54, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627400

RESUMO

BACKGROUND: Porcine post-weaning diarrhea (PWD) has reemerged as an important topic in pig production, as common control strategies based on prophylactic use of antimicrobials and zinc oxide have been deemed unsustainable. The objectives of this study were to estimate the cumulative incidence of porcine post-weaning diarrhea with different etiologies in production systems weaning without zinc oxide and prophylactic antimicrobials, to assess risk factors for post-weaning diarrhea, and to estimate the impact of post-weaning diarrhea on growth rate. A cohort study was conducted at two commercial indoor producers weaning without medicinal zinc oxide and prophylactic antimicrobials. RESULTS: Piglets were included at birth (n = 300) and 272 survived until weaning. After insertion to the nursery units, the piglets were clinically examined every day for 14 days, and rectal swabs were collected and analyzed for enterotoxigenic Escherichia coli (ETEC) and rotavirus A. The cumulative incidences of PWD the first 14 days after insertion to the nursery units were 41.8% (CI 33.6, 50.4) and 51.1% (CI 42.3, 60.0) at the two producers, respectively. We found a low incidence of cases associated to ETEC, and detected a substantial proportion of cases associated to rotavirus. We observed a biphasic pattern in the assumed etiology with rotavirus occurring first, and then a shift towards cases associated to ETEC/non-ETEC hemolytic E. coli. Being offspring of older sows was a protective factor for the development of PWD (Hazard ratio = 0.88 [CI 0.78, 0.99] per unit increase in parity of the dam). Low birth weight reduced the post-weaning growth rate (- 5.2 g/day [CI - 7.5, - 2.9] per 100 g decrease in birthweight) and increased the hazard of developing PWD (Hazard ratio for birthweight below 1100 g: 2.30 [CI 1.41-3.74]). The combined effect of having diarrhea for 2 days or more and receiving antimicrobial treatment was associated with an increased average daily weight gain. CONCLUSIONS: This study suggests novel insights regarding pathogen dynamics and risk factors for PWD in productions not using prophylactic antimicrobials and medicinal zinc. The findings may have important implications for both antimicrobial usage and prevention strategies.

11.
Vet Microbiol ; 259: 109135, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34090248

RESUMO

Bovine respiratory disease (BRD) is caused by a mixture of viruses and opportunistic bacteria belonging to Pasteurellaceae and Mycoplasma bovis. However, these organisms are also commonly isolated from healthy calves. This study aimed to determine whether the organisms are present in higher numbers in calves sick with acute BRD than in clinically healthy calves, and further to genetically characterize bacteria of the family Pasteurellaceae to understand whether particular types are associated with disease. Forty-six clinically healthy and 46 calves with BRD were sampled by broncheoalveolar lavage (BAL) method in 11 herds geographically spread over Denmark to determine presence and quantity of microorganisms by culture and quantitative real time qPCR. Isolates of Pasteurellaceae were tested for antibiotic resistance and were whole genome sequenced to determine genotypes. Histophilus somni was in particular positively associated with BRD, suggesting particular importance of this organism as likely aetiology of BRD. In addition, quantification of bacteria revealed that higher counts of H. somni as well as of M. haemolytica was also a good indicator of the disease. Pasteurellaceae isolates were susceptible to the commonly used antibiotics in treatment of BRD, and genotypes were shared between isolates from clinically healthy and sick calves.


Assuntos
Bactérias/genética , Bactérias/patogenicidade , Complexo Respiratório Bovino/microbiologia , Doenças dos Bovinos/virologia , Doenças Respiratórias/microbiologia , Doenças Respiratórias/veterinária , Animais , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/isolamento & purificação , Líquido da Lavagem Broncoalveolar/microbiologia , Líquido da Lavagem Broncoalveolar/virologia , Bovinos , Mannheimia haemolytica/genética , Mannheimia haemolytica/isolamento & purificação , Mannheimia haemolytica/patogenicidade , Pasteurellaceae/classificação , Pasteurellaceae/efeitos dos fármacos , Pasteurellaceae/genética , Pasteurellaceae/patogenicidade , Doenças Respiratórias/virologia
12.
PeerJ ; 8: e10451, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344086

RESUMO

Vibriosis, a hemorrhagic septicemic disease caused by the bacterium Vibrio anguillarum, is an important bacterial infection in Danish sea-reared rainbow trout. Despite of vaccination, outbreaks still occur, likely because the vaccine is based on V. anguillarum strains from abroad/other hosts than rainbow trout. Information about the genetic diversity of V. anguillarum specifically in Danish rainbow trout, is required to investigate this claim. Consequently, the aim of the present investigation was to sequence and to characterize a collection of 44 V. anguillarum strains obtained primarily from vibriosis outbreaks in Danish rainbow trout. The strains were sequenced, de novo assembled, and the genomes examined for the presence of plasmids, virulence, and acquired antibiotic resistance genes. To investigate the phylogeny, single nucleotide polymorphisms were identified, and the pan-genome was calculated. All strains carried tet(34) encoding tetracycline resistance, and 36 strains also contained qnrVC6 for increased fluoroquinolone/quinolone resistance. But interestingly, all strains were phenotypic sensitive to both oxytetracycline and oxolinic acid. Almost all serotype O1 strains contained a pJM1-like plasmid and nine serotype O2A strains carried the plasmid p15. The distribution of virulence genes was rather similar across the strains, although evident variance among serotypes was observed. Most significant, almost all serotype O2 and O3 strains, as well as the serotype O1 strain without a pJM1-like plasmid, carried genes encoding piscibactin biosynthesis. Hence supporting the hypothesis, that piscibactin plays a crucial role in virulence for pathogenic strains lacking the anguibactin system. The phylogenetic analysis and pan-genome calculations revealed great diversity within V. anguillarum. Serotype O1 strains were in general very similar, whereas considerable variation was found among serotype O2A strains. The great diversity within the V. anguillarum serotype O2A genomes is most likely the reason why vaccines provide good protection from some strains, but not from others. Hopefully, the new genomic data and knowledge provided in this study might help develop an optimized vaccine against V. anguillarum in the future to reduce the use of antibiotics, minimize economic losses and improve the welfare of the fish.

13.
PLoS One ; 15(9): e0238190, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32966297

RESUMO

Salmonella is an important human pathogen and poultry products constitute an important source of human infections. This study investigated prevalence; identified serotypes based on whole genome sequence, described spatial distribution of Salmonella serotypes and predicted risk factors that could influence the prevalence of Salmonella infection in commercial poultry farms in Nigeria. A cross sectional approach was employed to collect 558 pooled shoe socks and dust samples from 165 commercial poultry farms in North West Nigeria. On-farm visitation questionnaires were administered to obtain information on farm management practices in order to assess risk factors for Salmonella prevalence. Salmonella was identified by culture, biotyping, serology and polymerase chain reaction (PCR). PCR confirmed isolates were paired-end Illumina- sequenced. Following de novo genome assembly, draft genomes were used to obtain serotypes by SeqSero2 and SISTR pipeline and sequence types by SISTR and Enterobase. Risk factor analysis was performed using the logit model. A farm prevalence of 47.9% (CI95 [40.3-55.5]) for Salmonella was observed, with a sample level prevalence of 15.9% (CI95 [12.9-18.9]). Twenty-three different serotypes were identified, with S. Kentucky and S. Isangi as the most prevalent (32.9% and 11%). Serotypes showed some geographic variation. Salmonella detection was strongly associated with disposal of poultry waste and with presence of other livestock on the farm. Salmonella was commonly detected on commercial poultry farms in North West Nigeria and S. Kentucky was found to be ubiquitous in the farms.


Assuntos
Fazendas/estatística & dados numéricos , Aves Domésticas/microbiologia , Salmonella/isolamento & purificação , Animais , Nigéria , Prevalência , Fatores de Risco , Salmonella/classificação , Salmonella/imunologia , Sorogrupo
14.
BMC Vet Res ; 16(1): 148, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434525

RESUMO

BACKGROUND: Infection in the oviduct (salpingitis) is the most common bacterial infection in egg laying hens and is mainly caused by Escherichia coli. The disease is responsible for decreased animal welfare, considerable economic loss as well as a risk of horizontal and vertical transmission of pathogenic E. coli. The outcome of salpingitis may be either acute or chronic. It has not yet been clarified whether the pathological manifestation is a result of the characteristics of the E. coli or whether the manifestation is associated with host factors such as host immunity. RESULTS: From the core- and accessory genome analysis and comparison of 62 E. coli no genetic markers were found to be associated to either acute or chronic infection. Twenty of the 62 genomes harboured at least one antimicrobial resistance gene with resistance against sulfonamides being the most common. The increased serum survival and iron chelating genes iss and iroN were highly prevalent in genomes from both acute and chronic salpingitis. CONCLUSION: Our analysis revealed that no genetic markers could differentiate the E. coli isolated from acute versus chronic salpingitis in egg laying hens. The difference in pathological outcome may be related to other factors such as immunological status, genetics and health of the host. These data indicate that salpingitis is another manifestation of colibacillosis.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Doenças das Aves Domésticas/microbiologia , Salpingite/veterinária , Animais , Galinhas , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Feminino , Genoma Bacteriano , Doenças das Aves Domésticas/patologia , Salpingite/microbiologia , Salpingite/patologia , Sequenciamento Completo do Genoma
15.
Front Microbiol ; 11: 108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153519

RESUMO

Extended-spectrum ß-lactamase (ESBL)-producing bacteria constitute an emerging global health issue with food products being vehicles of transmission and the aquatic environments serving as potential reservoirs. This study aimed to characterize ESBL-producing Escherichia coli in Nile perch and water from Lake Victoria in Tanzania. A total of 180 samples of Nile perch and 60 water samples were screened for ESBL-producing E. coli on MacConkey agar supplemented with 2 µg/ml of cefotaxime and confirmed by bla CTX-M and bla TEM PCR. Antimicrobial resistance was determined by the disk diffusion method, and the ESBL-producing isolates were whole genome sequencing (WGS). ESBL-producing E. coli were detected in eight of the 180 analyzed Nile perch samples, and only one water sample was positive (1.7%, n = 60). Isolates were resistant to sulfamethoxazole-trimethoprim (100%), ampicillin/cloxacillin (100%), erythromycin 72.7% (8/11), tetracycline 90.9% (10/11), and nalidixic acid 63.6% (7/11). This mostly corroborates the resistance genes that they carried for sulfonamides (sul1 and sul2), trimethoprim (dfrA and dfrB), aminoglycosides [aac(3)-IId, strA, and strB], tetracycline [tet(B) and tet(D)], and fluoroquinolones (qepA4). They harbored plasmid replicon types IncF, IncX, IncQ, and Col and carried bla CTX-M- 15 and bla TEM- 1 B genes generally found on the same contigs as the IncF plasmid replicon. Although epidemiologically unrelated, the strains formed three separate sequence type-phylogroup-serotype-specific clusters: C1, C2, and C3. Cluster C1 included five strains (3 to 13 SNPs) belonging to ST167, phylogroup A, and serotype O9:H21; the two C2 strains (11 SNPs) belong to ST156, phylogroup B1, and serotype ONT:H28; and C3 was made up of four strains (SNPs ranged from 4 to 17) of ST636, phylogroup B2, and serotype O45:H7. The common virulence gene gad was reported in all strains. In addition, strains in C2 and C3 possessed iss, lpfA, and nfaE virulence genes, and the vat gene was found only in C3. The present study reports the occurrence of multidrug-resistant ESBL-producing E. coli carrying plasmid-mediated ESBL genes in offshore water and Nile perch in Lake Victoria. Strains formed three clonal clusters of unknown origin. This study reveals that the Lake may serve as reservoir for ESBL-producing bacteria that can be transmitted by fish as a food chain hazard of One-Health concern.

16.
Res Microbiol ; 171(3-4): 143-152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31991172

RESUMO

Polyamines are small cationic amines required for modulating multiple cell process, including cell growth and DNA and RNA stability. In Salmonella polyamines are primarily synthesized from L-arginine or L-ornithine. Based on a previous study, which demonstrated that polyamines affect the expression of virulence gene in S. Typhimurium, we investigated the role of polyamines in the global gene and protein expression in S. Typhimurium. The depletion of polyamine biosynthesis led to down-regulation of genes encoding structural components of the Type Three Secretion system 1 (TTSS1) and its secreted effectors. Interestingly, Expression of HilA, which is the master regulator of Salmonella Pathogenicity Island 1 (SPI1), was only reduced at the post-transcriptional in the polyamine mutant. Enzymes related to biosynthesis and/or transport of several amino acids were up-regulated, just as the Mg2+-transport systems were three to six-fold up-regulated at both the transcriptional and protein levels. Furthermore, in the polyamine depletion mutant, proteins related to stress response (IbpA, Dps, SodB), were 2-5 fold up-regulated. Together our data provide strong evidence that polyamine depletion affects expression of proteins linked with virulence and stress response of S. Typhimurium. Furthermore, polyamines positively affected translation of HilA, the major regulator of SPI1.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Poliaminas/metabolismo , Biossíntese de Proteínas , Salmonella typhimurium/fisiologia , Estresse Fisiológico , Transativadores/genética , Mutação , Proteômica/métodos , Infecções por Salmonella/microbiologia , Virulência/genética , Fatores de Virulência/genética
17.
Microorganisms ; 9(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383765

RESUMO

Spread of antibiotic resistance via mobile genetic elements associates with transfer of genes providing resistance against multiple antibiotics. Use of various comparative genomics analysis techniques enables to find intrinsic and acquired genes associated with phenotypic antimicrobial resistance (AMR) in Campylobacter jejuni genome sequences with exceptionally high-level multidrug resistance. In this study, we used whole genome sequences of seven C. jejuni to identify isolate-specific genomic features associated with resistance and virulence determinants and their role in multidrug resistance (MDR). All isolates were phenotypically highly resistant to tetracycline, ciprofloxacin, and ceftriaxone (MIC range from 64 to ≥256 µg/mL). Besides, two C. jejuni isolates were resistant to gentamicin, and one was resistant to erythromycin. The extensive drug-resistance profiles were confirmed for the two C. jejuni isolates assigned to ST-4447 (CC179). The most occurring genetic antimicrobial-resistance determinants were tetO, beta-lactamase, and multidrug efflux pumps. In this study, mobile genetic elements (MGEs) were detected in genomic islands carrying genes that confer resistance to MDR, underline their importance for disseminating antibiotic resistance in C. jejuni. The genomic approach showed a diverse distribution of virulence markers, including both plasmids and phage sequences that serve as horizontal gene transfer tools. The study findings describe in silico prediction of AMR and virulence genetics determinants combined with phenotypic AMR detection in multidrug-resistant C. jejuni isolates from Lithuania.

18.
Prev Vet Med ; 181: 104531, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30220483

RESUMO

This study presents a new method for detection of between-herd livestock movements to facilitate disease tracing and more accurately describe network behaviour of relevance for spread of infectious diseases, including within-livestock business risk-carrying contacts that are not necessarily recorded anywhere. The study introduces and substantiates the concept of grouping livestock herds into business-units based on ownership and location in the tracing analysis of animal movement-based contact networks. To test the utility of this approach, whole core genome sequencing of 196 Salmonella Dublin isolates stored from previous surveillance and project activities was combined with information on cattle movements recorded in the Danish Cattle Database between 1997 and 2017. The aim was to investigate alternative explanations for S. Dublin circulation in groups of herds connected by ownership, but without complete records of livestock movements. The EpiContactTrace R-package was used to trace the contact networks between businesses and compare the network characteristics of businesses sharing strains of S. Dublin with different levels of genetic relatedness. The ownership-only definition proved to be an unreliable grouping approach for large businesses, which could have internal distances larger than 250 km and therefore do not represent useful epidemiological units. Therefore, the grouping was refined using spatial analysis. More than 90% of final business units formed were composed of one single cattle property, whereas multi-property businesses could reach up to eight properties in a given year, with up to 15 cattle herds having been part of the same business through the study period. Results showed markedly higher probabilities of introduction of infectious animals between proposed businesses from which the same clone of S. Dublin had been isolated, when compared to businesses with non-related strains, thus substantiating the business-unit as an important epidemiological feature to consider in contact network analysis and tracing of infection routes. However, this approach may overestimate real-life contacts between cattle properties and putatively overestimate the degree of risk-contacts within each business, since it is based solely on information about property ownership and location. This does not consider administrative and individual farmers behaviours that essentially keep two properties separated. Despite this, we conclude that defining epidemiological units based on businesses is a promising approach for future disease tracing tasks.


Assuntos
Doenças dos Bovinos/transmissão , Busca de Comunicante/veterinária , Genoma Bacteriano , Salmonelose Animal/transmissão , Salmonella enterica/fisiologia , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Bases de Dados Factuais , Dinamarca , Salmonelose Animal/microbiologia , Salmonella enterica/genética
19.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31732576

RESUMO

Salmonella enterica serovar Dublin is a cattle-adapted S. enterica serovar causing both intestinal and systemic infection in its bovine host, and it is also a serious threat to human health. The present study aimed to determine the population structure of S Dublin isolates obtained from Danish cattle herds and to investigate how cattle isolates relate to Danish human isolates, as well as to non-Danish human and bovine isolates. Phylogenetic analysis of 197 Danish cattle isolates from 1996 to 2016 identified three major clades corresponding to distinct geographical regions of cattle herds. Persistence of closely related isolates within the same herd and their circulation between epidemiologically linked herds for a period of more than 20 years were demonstrated. These findings suggest that a lack of internal biosecurity and, to some extent, also a lack of external biosecurity in the herds have played an important role in the long-term persistence of S Dublin in Danish cattle herds in the period investigated. Global population analysis revealed that Danish cattle isolates clustered separately from bovine isolates from other countries, whereas human isolates were geographically spread. Resistance genes were not commonly demonstrated in Danish bovine isolates; only the isolates within one Danish clade were found to often harbor two plasmids of IncFII/IncFIB and IncN types, the latter plasmid carrying blaTEM-1, tetA, strA, and strB antibiotic resistance genes.IMPORTANCES Dublin causes economic losses in cattle production, and the bacterium is a public health concern. A surveillance and control program has been in place in Denmark since 2002 with the ultimate goal to eradicate S Dublin from Danish cattle herds; however, a small proportion of herds have remained positive for many years. In this study, we demonstrate that herds with persistent infection often were infected with the same strain for many years, indicating that internal biosecurity has to be improved to curb the infection. Further, domestic cases of S Dublin infection in humans were found to be caused both by Danish cattle isolates and by isolates acquired abroad. This study shows the strength of whole-genome sequencing to obtain detailed information on epidemiology of S Dublin and allows us to suggest internal biosecurity as a main way to control this bacterium in Danish cattle herds.


Assuntos
Doenças dos Bovinos/epidemiologia , Salmonelose Animal/epidemiologia , Infecções por Salmonella/epidemiologia , Salmonella enterica/isolamento & purificação , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Dinamarca/epidemiologia , Humanos , Filogenia , Prevalência , Estudos Retrospectivos , Infecções por Salmonella/microbiologia , Salmonelose Animal/microbiologia , Salmonella enterica/classificação , Sorogrupo , Sequenciamento Completo do Genoma/veterinária
20.
PLoS Negl Trop Dis ; 13(12): e0007934, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31869327

RESUMO

BACKGROUND: Tanzania is one of seven countries with the highest disease burden caused by cholera in Africa. We studied the evolution of Vibrio cholerae O1 isolated in Tanzania during the past three decades. METHODOLOGY/PRINCIPAL FINDINGS: Genome-wide analysis was performed to characterize V. cholerae O1 responsible for the Tanzanian 2015-2017 outbreak along with strains causing outbreaks in the country for the past three decades. The genomes were further analyzed in a global context of 590 strains of the seventh cholera pandemic (7PET), as well as environmental isolates from Lake Victoria. All Tanzanian cholera outbreaks were caused by the 7PET lineage. The T5 sub-lineage (ctxB3) dominated outbreaks until 1997, followed by the T10 atypical El Tor (ctxB1) up to 2015, which were replaced by the T13 atypical El Tor of the current third wave (ctxB7) causing most cholera outbreaks until 2017 with T13 being phylogenetically related to strains from East African countries, Yemen and Lake Victoria. The strains were less drug resistant with approximate 10-kb deletions found in the SXT element, which encodes resistance to sulfamethoxazole and trimethoprim. Nucleotide deletions were observed in the CTX prophage of some strains, which warrants further virulence studies. Outbreak strains share 90% of core genes with V. cholerae O1 from Lake Victoria with as low as three SNPs difference and a significantly similar accessory genome, composed of genomic islands namely the CTX prophage, Vibrio Pathogenicity Islands; toxin co-regulated pilus biosynthesis proteins and the SXT-ICE element. CONCLUSION/SIGNIFICANCE: Characterization of V. cholerae O1 from Tanzania reveals genetic diversity of the 7PET lineage composed of T5, T10 and T13 sub-lineages with introductions of new sequence types from neighboring countries. The presence of these sub-lineages in environmental isolates suggests that the African Great Lakes may serve as aquatic reservoirs for survival of V. cholerae O1 favoring continuous human exposure.


Assuntos
Cólera/epidemiologia , Cólera/microbiologia , Epidemias , Genoma Bacteriano , Vibrio cholerae O1/classificação , Vibrio cholerae O1/genética , Evolução Molecular , Genótipo , Humanos , Epidemiologia Molecular , Tanzânia/epidemiologia , Vibrio cholerae O1/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA